Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Front Cell Infect Microbiol ; 12: 945865, 2022.
Article in English | MEDLINE | ID: covidwho-1974643

ABSTRACT

Stress in poultry can lead to changes in body metabolism and immunity, which can increase susceptibility to infectious diseases. However, knowledge regarding chicken responses to viral infection under stress is limited. Dexamethasone (Dex) is a synthetic glucocorticoid similar to that secreted by animals under stress conditions, and has been widely used to induce stress in chickens. Herein, we established a stress model in 7-day-old chickens injected with Dex to elucidate the effects of stress on IBV replication in the kidneys. The metabolic changes, immune status and growth of the chickens under stress conditions were comprehensively evaluated. Furthermore, the metabolic profile, weight gain, viral load, serum cholesterol levels, cytokines and peripheral blood lymphocyte ratio were compared in chickens treated with Dex and infected with IBV. An LC-MS/MS-based metabolomics method was used to examine differentially enriched metabolites in the kidneys. A total of 113 metabolites whose abundance was altered after Dex treatment were identified, most of which were lipids and lipid-like molecules. The principal metabolic alterations in chicken kidneys caused by IBV infection included fatty acid, valine, leucine and isoleucine metabolism. Dex treatment before and after IBV infection mainly affected the host's tryptophan, phenylalanine, amino sugar and nucleotide sugar metabolism. In addition, Dex led to up-regulation of serum cholesterol levels and renal viral load in chickens, and to the inhibition of weight gain, peripheral blood lymphocytes and IL-6 production. We also confirmed that the exogenous cholesterol in DF-1 cells promoted the replication of IBV. However, whether the increase in viral load in kidney tissue is associated with the up-regulation of cholesterol levels induced by Dex must be demonstrated in future experiments. In conclusion, chick growth and immune function were significantly inhibited by Dex. Host cholesterol metabolism and the response to IBV infection are regulated by Dex. This study provides valuable insights into the molecular regulatory mechanisms in poultry stress, and should support further research on the intrinsic link between cholesterol metabolism and IBV replication under stress conditions.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chickens , Chromatography, Liquid , Dexamethasone/pharmacology , Infectious bronchitis virus/physiology , Kidney , Tandem Mass Spectrometry , Weight Gain
2.
Front Microbiol ; 13: 883642, 2022.
Article in English | MEDLINE | ID: covidwho-1938632

ABSTRACT

Infectious bronchitis virus (IBV) has been prevalent in chicken farms for many years, and its control relies on extensive vaccine administration. The continuous emergence of new variants and the low cross-protection efficiency prompt the development of new vaccines. In this study, we develop a reverse genetics technique based on the classical vaccine strain H120 genome, via in vitro ligation method. Using the H120 genome as the backbone, we constructed the recombinant virus rH120-QX(S) by replacing the H120 S gene with the QX S gene, a prevalent strain in China. Biological characteristics of the rH120-QX(S) virus, such as 50% egg lethal dose (ELD50), 50% egg infectious dose (EID50), dwarf embryo, growth curve, and genetic stability, are measured, which are comparable to the parental virus H120. There are no clinical symptoms and tissue lesions in the trachea and kidney in the rH120-QX(S)-infected specific-pathogen-free (SPF) chickens, demonstrating that this recombinant virus does not confer pathogenicity. Furthermore, protection studies show that there is 100% homologous protection of rH120-QX(S) to the virulent QX strain, as shown by the absence of clinical signs and no lethality. Taken together, our results demonstrate that swapping the S gene onto the H120 genetic backbone is a precise and effective way to produce genetically defined IBV vaccine candidates.

3.
Front Immunol ; 13: 791267, 2022.
Article in English | MEDLINE | ID: covidwho-1834396

ABSTRACT

Host cholesterol metabolism remodeling is significantly associated with the spread of human pathogenic coronaviruses, suggesting virus-host relationships could be affected by cholesterol-modifying drugs. Cholesterol has an important role in coronavirus entry, membrane fusion, and pathological syncytia formation, therefore cholesterol metabolic mechanisms may be promising drug targets for coronavirus infections. Moreover, cholesterol and its metabolizing enzymes or corresponding natural products exert antiviral effects which are closely associated with individual viral steps during coronavirus replication. Furthermore, the coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 infections are associated with clinically significant low cholesterol levels, suggesting cholesterol could function as a potential marker for monitoring viral infection status. Therefore, weaponizing cholesterol dysregulation against viral infection could be an effective antiviral strategy. In this review, we comprehensively review the literature to clarify how coronaviruses exploit host cholesterol metabolism to accommodate viral replication requirements and interfere with host immune responses. We also focus on targeting cholesterol homeostasis to interfere with critical steps during coronavirus infection.


Subject(s)
COVID-19 , Antiviral Agents/therapeutic use , Cholesterol/metabolism , Humans , Virus Replication
4.
Arch Virol ; 166(6): 1599-1605, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1549420

ABSTRACT

Pigeon paramyxovirus-1 (PPMV-1) is a strain of Newcastle disease virus (NDV) that has adapted to infect pigeons and poses a constant threat to the commercial poultry industry. Early detection via rapid and sensitive methods, along with timely preventative and mitigating actions, is important for reducing the spread of PPMV-1. Here, we report the development of a TaqMan loop-mediated isothermal amplification assay (TaqMan-LAMP) for rapid and specific detection of PPMV-1 based on the F gene. This system makes use of six novel primers and a TaqMan probe that targets nine distinct regions of the F gene that are highly conserved among PPMV-1 isolates. The results showed that the limit of detection was 10 copies µL-1 for PPMV-1 cDNA and 0.1 ng for PPMV-1 RNA. The reaction was completed within 25 min and was thus faster than conventional RT-PCR. Moreover, no cross-reactions with similar viruses or with peste des petits ruminants virus (PPRV) or NDV LaSota vaccine strains were observed under the same conditions. To evaluate the applicability of the assay, the TaqMan-LAMP assay and a commercial RT-PCR assay were compared using 108 clinical samples, and the concordance rate between two methods was found to be 96.3%. The newly developed PPMV-1 TaqMan-LAMP assay can therefore be used for simple, efficient, rapid, specific, and sensitive diagnosis of PPMV-1 infections.


Subject(s)
Molecular Diagnostic Techniques/veterinary , Newcastle disease virus/genetics , Newcastle disease virus/isolation & purification , Nucleic Acid Amplification Techniques/veterinary , Animals , Columbidae , Feces/virology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral , Sensitivity and Specificity , Time Factors
5.
PLoS Pathog ; 17(2): e1008690, 2021 02.
Article in English | MEDLINE | ID: covidwho-1105832

ABSTRACT

Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs exert anti-viral functions due to their involvement in protein synthesis shut off and recruitment of innate immune signaling intermediates. The largest RNA viruses, coronaviruses, impose great threat to public safety and animal health; however, the significance of SGs in coronavirus infection is largely unknown. Infectious Bronchitis Virus (IBV) is the first identified coronavirus in 1930s and has been prevalent in poultry farm for many years. In this study, we provided evidence that IBV overcomes the host antiviral response by inhibiting SGs formation via the virus-encoded endoribonuclease nsp15. By immunofluorescence analysis, we observed that IBV infection not only did not trigger SGs formation in approximately 80% of the infected cells, but also impaired the formation of SGs triggered by heat shock, sodium arsenite, or NaCl stimuli. We further demonstrated that the intrinsic endoribonuclease activity of nsp15 was responsible for the interference of SGs formation. In fact, nsp15-defective recombinant IBV (rIBV-nsp15-H238A) greatly induced the formation of SGs, along with accumulation of dsRNA and activation of PKR, whereas wild type IBV failed to do so. Consequently, infection with rIBV-nsp15-H238A strongly triggered transcription of IFN-ß which in turn greatly affected rIBV-nsp15-H238A replication. Further analysis showed that SGs function as an antiviral hub, as demonstrated by the attenuated IRF3-IFN response and increased production of IBV in SG-defective cells. Additional evidence includes the aggregation of pattern recognition receptors (PRRs) and signaling intermediates to the IBV-induced SGs. Collectively, our data demonstrate that the endoribonuclease nsp15 of IBV interferes with the formation of antiviral hub SGs by regulating the accumulation of viral dsRNA and by antagonizing the activation of PKR, eventually ensuring productive virus replication. We further demonstrated that nsp15s from PEDV, TGEV, SARS-CoV, and SARS-CoV-2 harbor the conserved function to interfere with the formation of chemically-induced SGs. Thus, we speculate that coronaviruses employ similar nsp15-mediated mechanisms to antagonize the host anti-viral SGs formation to ensure efficient virus replication.


Subject(s)
COVID-19/virology , Cytoplasmic Granules/metabolism , Endoribonucleases/immunology , Endoribonucleases/metabolism , SARS-CoV-2/physiology , Viral Nonstructural Proteins/immunology , Viral Nonstructural Proteins/metabolism , COVID-19/metabolism , Cell Line , Coronavirus/immunology , Cytoplasmic Granules/immunology , Cytoplasmic Granules/virology , Humans , Interferon-beta/immunology , Interferon-beta/metabolism , SARS-CoV-2/metabolism , Signal Transduction , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL